Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Encapsulated bulk mode microresonators in the megahertz range are used in commercial timekeeping and sensing applications, but their performance is limited by the current state of the art of readout methods. We demonstrate a readout using dispersive coupling between a high-Q encapsulated bulk mode micromechanical resonator and a lumped element microwave resonator that is implemented with commercially available components and standard printed circuit board fabrication methods and operates at room temperature and pressure. A frequency domain measurement of the microwave readout system yields a displacement resolution of 522 fm/Hz, which demonstrates an improvement over the state of the art of displacement measurement in bulk-mode encapsulated microresonators. This approach can readily be implemented in cryogenic measurements, allowing for future work characterizing the thermomechanical noise of encapsulated bulk mode resonators at cryogenic temperatures.more » « less
-
We derive the displacement noise spectrum of a parametrically pumped resonator below the onset for self-excited oscillations. We extend the fluctuation-dissipation response of a thermomechanical-noise-driven resonator to the case of degenerate parametric pumping as a function of pump magnitude and frequency while properly accounting for the quadrature-dependence of the parametric thermal noise squeezing. We use measurements with a microelectromechanical cantilever to corroborate our model.more » « less
-
Sensitive capacitive transduction of micromechanical resonators can contribute significant electrical dissipation, which degrades the quality factor of the eigenmodes. We theoretically and experimentally demonstrate a scheme for isolating the electrical damping of a mechanical resonator due to Ohmic dissipation in the readout amplifier. The quality factor suppression arising from the amplifier is strongly dependent on the amplifier feedback resistance and parasitic capacitance. By studying the thermomechanical displacement noise spectrum of a doubly clamped micromechanical beam, we confirm that electrical dissipation tunes the actual, not effective, quality factor. Electrical dissipation is an important consideration in the design of sensitive capacitive displacement transducers, which are a key component in resonant sensors and oscillators.more » « less
An official website of the United States government

Full Text Available